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Abstract

We review recent advances concerning the nature of fluctuation effects occuring

at continuous filling transitions pertinent to fluid adsorption in wedge geome-

tries. Unlike continuous (critical) wetting transitions for planar interfaces which

are an extremely rare experimental phenomena, continuous filling transitions

should be easily observable in the laboratory since they can occur even if the

underlying wetting transition is first order. We argue that interfacial fluctua-

tion effects at filling transitions are extremely strong and lead to a remarkable

universal divergence of the interfacial roughness ξ⊥∼(TF −T )−1/4 on approach-

ing the transition temperature TF , valid for all types of intermolecular forces.

The results of renormalisation group and transfer matrix calculations of a novel

interfacial model yielding a complete classification of the critical exponents for

all dimensions and ranges of forces are given.

KEY WORDS: critical exponents; effective interfacial model; filling; interfacial

tension; wetting



1 Introduction

After nearly three decades of intense theoretical and experimental scrutiny, it

has emerged that there are basically two reasons why it is extremely difficult to

observe interfacial fluctuation effects at continuous (critical) wetting transitions

in the laboratory [1]. Firstly, critical wetting is a rather rare phenomenon for

which no examples are known for solid-liquid interfaces and only a very limit-

ed number for fluid-fluid interfaces [2, 3]. Secondly, the influence of interfacial

fluctuations in three dimensions (d= 3) is believed to be rather small [1]. For

example, for systems with long-ranged forces, the divergence of the wetting lay-

er thickness � on approaching the wetting temperature Tw is mean-field-like,

�∼(Tw − T )−1, and the only predicted effect of fluctuations is to induce an ex-

tremely weak divergence of the width (roughness) ξ⊥ of the unbinding interface:

ξ⊥ ∼√− ln(Tw − T ). Famously, non-classical and strongly non-universal crit-

ical exponents are only predicted for systems with strictly short-ranged forces

[4], but even here the size of the asymptotic critical regime is very small and

beyond the reach of current experimental and simulation methods [3, 5, 6]. Here

we review recent theoretical studies [7] of fluctuation effects occuring at contin-

uous (critical) filling or wedge-wetting transitions [8, 9, 10] pertinent to fluid

adsorption in wedge geometry and show that the above problems do not arise

for filling transitions. First, we emphasise (contrary to previous statements in

the literature [9]) that critical filling can occur in systems made from walls that

exhibit first-order wetting transitions. This is an extremely important point

since it implies that the observation of critical filling transitions is a realistic

experimental prospect. Second, we argue that interfacial fluctuations have an

extraordinarily strong influence on the character of the filling transition and, in

particular in three dimensions, lead to an interfacial roughness ξ⊥ characteris-

ing the singularity which diverges with a universal critical exponent. In fact, all

the critical exponents are totally different to those believed to occur at critical
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wetting. The fluctuation theory is based on a) the derivation of a Ginzburg cri-

terion for the self-consistency of mean-field (MF) theory and b) exact transfer

matrix analyses and approximate functional renormalisation group calculations

of a novel interfacial Hamiltonian model for wedge wetting which has been intro-

duced to account for the highly anisotropic soft-mode fluctuations. This model

leads to a complete classification of the critical behaviour in arbitray dimension

d and predicts some remarkable fluctuation dominated phenomena which we

believe may be tested in the laboratory.

As mentioned above, there are two essential features emerging from the

theory of filling whick make the observation of strong interfacial fluctuation

effects a realistic experimental possibility. These are:

• The existence of continuous filling transition for wedges made from walls

exhibiting first order wetting.

• The enhancement of fluctuation effects at filling as compared to wetting

due to the extreme anisotropy of the capillary-wave-like modes.

These points are dealt with separately below.

2 Continuous filling and first-order wetting

To begin, we recall the basic phenomenology of wedge-wetting and highlight the

mechanism by which critical filling occurs in wedge geometries even for walls

exhibiting first-order wetting transitions. Consider a wedge (in d= 3 to begin

with) formed by the junction of two walls at angles ±α to the horizontal. Axes

(x, y) are oriented across and along the wedge respectively. We suppose the

wedge is in contact with a bulk vapour phase at temperature T (less than the

bulk critical value Tc) and chemical potential µ. Macroscopic arguments [8, 9]

dictate that at bulk coexistence, µ=µsat(T ), the wedge is completely filled by

liquid for all temperatures Tc > T ≥ TF where TF is the filling temperature
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satisfying Θ(TF ) =α. Here, Θ(T ) is the temperature dependent contact angle

of a liquid drop on a planar surface. Thus, filling occurs at a temperature lower

than the wetting temperature Tw and may be viewed as an interfacial unbind-

ing transition (of first- or second-order) in a system with broken translational

invariance. We refer to any continuous filling transition occurring as T → TF ,

µ→µsat(TF ) as critical filling. Also of interest is the complete filling transition

which refers to the continuous divergence of the adsorption as µ→µsat(T ) for

Tc>T ≥TF which is known to be characterised by geometry dependent critical

exponents [11]. Here, we focus exclusively on critical filling and, in particular,

the critical singularities occurring as t≡(TF − T )/TF →0+ at bulk coexistence.

The phase transition is associated with the divergence of four lengthscales each

characterised by a critical exponent: the mid-point (x=0) height of the liquid-

vapour interface �0 ∼ t−β0 , the mid-point interfacial roughness ξ⊥ ∼ t−ν⊥ , the

lateral extension of the filled region ξx ∼ t−νx and the correlation length of the

interfacial fluctuations along the wedge ξy ∼ t−νy . So far, there has been no dis-

cussion of the values of these critical exponents for three dimensional systems

beyond a simple MF calculation for �0 [9]. On the other hand, transfer-matrix

studies [10] in d= 2 indicate that fluctuation effects are very strong at wedge-

wetting and lead to universal critical exponents β0 =ν⊥ =νx =1. This is highly

suggestive that fluctuation effects play an important role in d= 3, relevant to

experimental studies.

Previous MF analysis [9] have shown that a suitable starting point for the

study of wedge-wetting in open wedges (small α) is the interfacial model

H [�] =
∫ ∫

dx dy

[
Σ
2

(∇�)2 +W (�− α|x|)
]

(1)

where �(x, y) denotes the local height of the liquid-vapour interface relative

to the horizontal, Σ is the liquid-vapour interfacial tension and W (�) is the

binding potential modelling the wetting properties of the wall. This model
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emerges as the appropriate small α limit of a more general drumhead model

with perpendicular interaction to the substrate. At MF level, this functional

is simply minimised to yield an Euler-Lagrange equation for the y-independent

equilibrium height profile �(x),

Σ �̈ = W ′(�− α|x|), (2)

where the dot and the prime denote differentiation with respect to x and �

respectively. This differential equation is solved subject to the boundary con-

ditions �̇(0) = 0 and �(x)−α|x| → �π as |x| → ∞. Here, �π denotes the MF

planar wetting film thickness (i.e., W ′(�π)=0) and remains microscopic at the

filling transition. Integrating once the equation yields a simple equation for the

midpoint height,
Σ α2

2
= W (�0) −W (�π), (3)

which can be solved graphically [9] (see Fig. 1). Note that at bulk coexistence,

Young’s equation implies W (�π)=−ΣΘ2/2 (within the present small angle ap-

proximation) so that the present model immediately recovers the macroscopic

result Θ(TF ) = α. Depending on the form of W (�) (at TF ) the divergence of

�0 as T → T−
F is first-order or continuous. The condition for critical filling is

that between the global minimum of W (�) at �π and the extremum at �= ∞
there is no potential barrier. Thus, walls exhibiting critical wetting necessarily

form wedges exhibiting critical filling. However, for walls exhibiting first-order

wetting, the filling transition is first order or critical depending on whether the

transition temperature TF is greater or lesser than the spinoidal temperature

Ts (< Tw) at which the potential barrier in W (�) appears. Since the macro-

scopic condition Θ(TF )=α implies that TF can be trivially lowered by making

the wedge angle more acute, it follows that walls exhibiting first-order wetting

transitions will, in general, exhibit both types of filling transition (see Fig. 2).

Note that the tricritical value of the wedge angle α∗ separating the loci of first

and second-order filling transitions will itself be rather small for weakly first-
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order wetting so that the Hamiltonian (1) is still valid. The MF value of height

critical exponent β0 for critical filling follows directly from the equation for �0

if we write the asymptotic decay of the binding potential as W (�) ≈ − A�−p

where A is a (positive) Hamaker constant and p depends on the range of the

forces. For systems with short-ranged forces, this decay is exponentially small.

A simple calculation then yields β0 = 1/p (quoted in ref. [10] and implicit in

reference [9]) so that, for dispersion forces (corresponding to p = 2), the MF

prediction is β0 = 1/2 whilst for short-ranged forces β0 = 0(ln). The struc-

ture of the MF height profile �(x) is particularly simple near critical filling [9]

and has crucial consequences. In essence, the interface is flat (i.e., �(x) ∼ �0)

for |x|<̃ �0/α whilst for |x|>̃ �0/α, the height decays exponentially quickly to its

asymptotic planar value �π above the wall. Importantly, the lengthscale control-

ling this exponential decay is the wetting correlation length ξ‖ ≡
√

Σ/W ′′(�π)

which remains microscopic at the filling transition. One consequence of this is

that the lateral width of the filled portion of the wedge is trivially identified as

ξx∼2�0/α so that νx =β0. More important consequences of the height structure

are considered below. In summary, the MF exponents for critical filling so far

derived are

β0 =
1
p
, νx =

1
p
, νy =

1
2

+
1
p

MF. (4)

3 Fluctuation theory for critical filling

We now turn to the main body of our analysis concerning the nature of fluc-

tuation effects at critical filling and consider first fluctuations about the MF

profile �(x) as measured by the height-height correlation function H(x, x′; ỹ)≡
〈 δ�(x, y) δ�(x′, y′) 〉 where δ�(x, y)≡�(x, y)−〈 �(x, y) 〉 and ỹ≡y′−y. From this,

we can extract a Ginzburg criterion for the self-consistency of the theory. To

calculate the correlation function, we first exploit the translational invariance

along the wedge and introduce the structure factor
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S(x, x′;Q) =
∫
dỹ ei Q ỹ H(x, x′; ỹ). (5)

The assumption of MF theory is that fluctuation about �(x) are small and

hence a Gaussian expansion of H [�] about the minimum suffices to determine

the correlations. This leads to the differential (Ornstein-Zernike) equation

(−Σ∂2
x + ΣQ2 +W ′′(�(x)−α|x|)) S(x, x′;Q)=δ(x−x′) (6)

where we have adsorbed a factor of kBT into the definitions of Σ and W (�). The

structure of correlations across the wedge is manifest in the properties of the

zeroth moment S0(x, x′)≡S(x, x′; 0) which can be obtained analytically using

standard methods. We find

S0(x, x′) =
(
|�̇(x)| − α

) (
|�̇(x′)| − α

)
× (7) 1

2αW ′(�0)
+
H(xx′)

Σ

∫ min(|x|,|x′|)

0

dx(
�̇(x) − α

)2


where H(x) denotes the Heaviside step function (H(x) = 1 for x ≥ 0, H(x) = 0

otherwise). From the properties of the equilibrium profile �(x), it follows that

the lengthscale ξx also controls the extent of the correlations across the wedge.

In fact, it can be seen that correlations across the wedge are very large and also

(essentially) position independent, provided both particles lie within the filled

region, implying that, at fixed y, the local height of the filled region fluctuates

coherently. On the other hand, the correlations are totally negligible if one

(or both) particles lie outside the filled region since their asymptotic decay is

controlled by the microscopic length ξ‖. These are important remarks central

to the development of a general fluctuation theory of wedge-wetting.

Turning next to correlations along the wedge, we note that a simple extension

of the above analysis shows that the dominant singular contribution to the

structure factor has a simple Lorentzian form

6



S(x, x′;Q) ≈ S0(0, 0)
1 + Q2 ξ2y

; |x|, |x′|<̃ ξx/2, (8)

with S0(0, 0) = α/2W ′(�0) which shows a very strong divergence as T → T−
F .

The correlation length along the wedge is identified by ξy ≈ (Σ�0/W ′(�0))1/2.

Substituting for the form of W (�), and recalling the divergence of �0 at critical

filling, leads to the desired MF result νy = 1/p+ 1/2 for the correlation length

critical exponent as T → TF at bulk coexistence. Note that ξy � ξx so that

the fluctuations are highly anisotropic and are totally dominated by modes

parallel to the wedge direction. The final lengthscale that we calculate within

the present MF/Gaussian analysis is the mid-point width ξ⊥ defined by ξ2⊥ ≡
〈(�(0, y) − �0)2〉=H(0, 0; 0) which may be obtained from the Fourier inverse of

S(x, x′;Q). This leads to the intriguing relation

ξ⊥ ∼
√

ξy
Σ �0

(9)

which is one of the central results of this paper. In this way, we are led to the

remarkable prediction that the divergence of ξ⊥ at critical filling is universal,

independent of the range of the intermolecular forces, and of the form ξ‖∼ t−1/4

which should be observable in experimental and computer simulation studies.

Thus, to the list (4) we shall add

ν⊥ =
1
4
, MF. (10)

We shall argue below that this result is not affected by fluctuation effects even

when MF theory breaks down.

The first step in the development of a fluctuation theory for filling tran-

sitions is the derivation of a Ginzburg criterion. The MF analysis presented

above should be valid if the fluctuations in the interfacial height are relatively

small. Thus, we require ξ⊥/�0�1 or, equivalently, t1/p−1/4�1, implying that

MF theory, and the values of critical exponents quoted above are valid in three-

dimensions only for p < 4. For p≥ 4, fluctuation effects dominate and we can
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anticipate that the roughness ξ⊥ is comparable with the interfacial height �0.

One way of approaching this problem is to formulate a renormalization group

theory based on the effective Hamiltonian (1). This is an extremely difficult

task and one which we believe is unnecessarily complicated. In view of the ex-

treme anisotropy of fluctuations at filling transitions and their coherent nature

across the wedge, we propose that the only fluctuations that are relevant for the

asymptotic critical behaviour are those arising from the thermal excitations of

the mid-point height �0(y) along the wedge. More specifically, for a constrained

non-planar configuration for the mid-point distribution {�0(y)}, we assume that

all other fluctuations are small and, hence, following established methods [12],

may be treated in saddle-point approximation. Thus, we are led to a sim-

pler wedge Hamiltonian (of reduced dimensionality), F [�0(y)] = min†H [�(x, y)]

where the dagger denotes the constraint that �(0, y)=�0(y) ∀y. In this way, we

have derived the simpler one-dimensional model (of three-dimensional filling)

F [�0] =
∫
dy

[
Σ�0
α

(
d�0
dy

)2

+ VF (�0)

]
(11)

where the coefficient of the gradient term is the local height dependent line ten-

sion σ(�0) describing the bending energy of long-wavelength fluctuations along

the wedge (see below) and VF is the effective wedge filling potential which has

the general expansion

VF (�) =
Σ(Θ2 − α2)

α
�+

A

(p− 1)α
�1−p + · · · . (12)

Note that, in the critical regime, (Θ(T ) − α)∼ t, so that minimisation of (12)

identically recovers the MF result for �0. For p= 1, the second term in (12) is

logarithmic whilst for short-ranged forces, it is exponentially small. We com-

ment here that the derivation of the wedge Hamiltonian (11) from the interface

model (1) proceeds in a manner directly analogous to the derivation of the inter-

facial model (1) for wetting from a more microscopic Landau-Ginzburg-Wilson
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Hamiltonian which has been discussed in detail by Fisher and Jin [12]. Thus, the

full expresion for the line tension term σ(�0) in (11) can be written in terms of

the planar constrained height profiles �(π)(x; �0) analogous to the relation of the

position-dependent stiffness in the Fisher-Jin theory to the planar constrained

magnetisation profile m(π)(z; �). Thus, we find

σ(�0) = Σ
∫ ∞

−∞
dx

(
∂�(π)(x; �0)

∂�0

)2

(13)

which recovers the position dependence of the first term in (11) for large �0.

The planar constrained profile �(π)(x; �0) is found from solution to the Euler-

Lagrange equation (2) with a constrained boundary condition at x=0 such that

�(π)(0; �0)=�0.

We propose that the effective Hamiltonian (11) contains all the essential

physics associated with the asymptotic critical behaviour at filling transitions.

Two checks on this hypothesis are that, in MF and Gaussian approximation,

the new model identically recovers the equation for the mid-point height and

structure factor emerging from the more complicated model (1) in the same

approximation. The great advantage of the new model is, of course, that due

to its one-dimensional character, it can be studied exactly using transfer-matrix

techniques. The (normalized) eigenfunctions ψn(�0) and eigenvalues En of the

spectrum are found by solving the differential equation (setting kBT = 1 for

convenience)

−αψ
′′
n(�0)

Σ �0
+

3αψ′
n(�0)

2 Σ �20
+ VF (�0)ψn(�0) = En ψn(�0) (14)

from which the quantities of interest can be calculated. In particular, the prob-

ability distribution for the mid-point height P(�0) = |ψ0(�0)|2 and the wedge

correlation length ξy =1/(E1 −E0). The solution of this eigenvalue problem for

the wedge potential (12) gives a complete classification of the critical behaviour

at critical filling. The calculation confirms that MF theory is valid for p < 4,

whilst the criticality is fluctuation dominated for p> 4 and is characterised by
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universal critical exponents. The complete list of critical exponents for critical

filling in d=3 is given by

β0 = 1
p , νx = 1

p , νy = 1
2 + 1

p ν⊥ = 1
4 p < 4

β0 = 1
4 , νx = 1

4 , νy = 3
4 ν⊥ = 1

4 p > 4.

Note that the universal critical exponents occuring for p > 4 are pertinent to

critical filling occurring in systems with short-ranged forces and may be tested

in Ising model simulation studies similar earlier work on critical wetting [5].

For experimental systems with dispersion forces (p = 2), our predictions are

β0 =νx =1/2, ν⊥ =1/4 and νy =1.

To finish our article, we make three final remarks. Firstly, out of bulk

two-phase coexistence (δµ ≡ µsat(T ) − µ > 0) and close to filling, the mid-

point height, correlation lengths and roughness show scaling behaviour. For

example, in the fluctuation-dominated regime, the solution of (14) shows that

�0 = t−1/4 Λ(δµ t−5/4) where Λ(ζ) is an appropriate scaling function. Thus, along

the critical filling isotherm (T =TF , δµ→0), the height diverges as �0∼δµ−1/5,

which may be easier to observe in experimental and simulation studies. Second-

ly, the effective filling model that we have introduced can also be used to study

complete filling occurring for T >TF as δµ→ 0. The critical behaviour here is

found to be MF-like (i.e. ξ⊥��0) but also universal, independent of the range of

the forces and is consistent with the hypothesis that the geometry of the wedge

determines the critical behaviour for this transition [11]. Fluctuation effects at

this transition are rather less interesting than for critical filling. Finally, fluctua-

tion model (11) can be generalised to arbitrary bulk dimensions d corresponding

to wedges which are translationally invariant in d− 2 directions. We have stud-

ied this model using functional renormalization group techniques and found two

fluctuation regimes for general dimension d<4. For p<pc≡2(d−1)/(4−d), the

critical exponent β0 = 1/p, corresponding to MF behaviour, whilst for p > pc,

the transition is fluctuation dominated and β0 =(4−d)/2(d−1). Importantly, for
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d=2, these predictions correspond to the known values of the critical exponents

for 2D wedge wetting found from exact transfer-matrix analysis [10] of the full

interfacial model (1).

4 Conclusions

We have presented a brief review of the theory for interfacial fluctuation effects

at three-dimensional filling and given a complete classification of the possible

critical behaviour. We have emphasised two fundamental features of the filling

transition which have advantages over the wetting transition as regarding the

experimental observation of strong interfacial fluctuation effects. These are the

existence of critical filling transitions for wedges made from walls exhibiting first

order wetting and the pronounced influence of fluctuation effects due to the ex-

treme anisotropy of interfacial modes which effectively lower the dimensionality

of the long-wavelength fluctuations. Consequently, we are confident that the

theoretical predictions presented here can be tested experimentally.
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First−order Wetting

T < TS
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T > TS

Figure 1: Graphical construction for the mean-field midpoint height �0 ap-

proaching a filling transition for wedges made from walls showing first order

wetting. Below the spinoidal temperature TS, the wetting binding potential

has no potential barrier and so the filling transition occuring as α→Θ(TF ) is

critical.
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Figure 2: Schematic surface phase diagram showing temperature vs. the opening

angle α for a system undergoing a first-order wetting transition at Tw in the

planar case (α=0). The filling transition is only first-order (F1) if it takes place

at a temperature above the spinoidal temperature Ts but becomes second-order

(F2) if the filling temperature is less than Ts.
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